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SUMMARY

This paper describes the calculation of shape and scale parameters of the

two-parameter Weibull distribution using the least-squares analysis and maximum
likelihood methods for volume- and surface-flaw-induced fracture in ceramics

with complete and censored samples. Detailed procedures are given for evaluat-

ing 90-percent confidence intervals for maximum likelihood estimates of shape

and scale parameters, the unbiased estimates of the shape parameters, and the

Weibull mean values and corresponding standard deviations. Furthermore, this

paper describes the necessary steps for detecting outliers and for calculating

the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and

90-percent confidence bands about the Weibull distribution. It also shows how
to calculate the Batdorf flaw-density constants by using the Neibull distribu-

tion statistical parameters. The techniques described have been verified with

several example problems from the open literature, and have been coded in the

Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program.

INTRODUCTION

The fracture behavior of ceramics differs considerably from that of metals.
This is due to several factors: Little or no plastic deformation exists at
crack tips in ceramics. They also possess lower fracture toughness, and sub-
critical cracks grow under static or dynamic stresses, even in ambient environ-
ments. Ceramics are also not generally homogeneous. They may exhibit one or
more types of defects with different distribution of sizes. The observed varia-
bility in ceramic strength is due to the presence of microcracks, the large
range of flaw sizes, and the residual stresses arising from anlsotroplc contrac-
tion upon cooling. The design of load-bearing components uslng structural cer-
amics requires a complete understanding of the statistical nature of fracture
in brlttle materlals.

The reliability and consistency of design strength data for ceramlcs is

relatively poor when compared to the design data for materials like metals and

plastics. The reason for this is that ceramics contain a large number of

microcracks with various sizes and orientations which, along with residual



stresses from processing, cause a wide scatter In strength measurements. The
great variation In strength of nominally identical specimens necessitates test-
ing large numbers of samples to fully describe the failure phenomena. However,
this poses a dilemma slnce the costs associated with testing equipment, speci-
men preparation, and precautions to ensure against damage of specimens are high.
Thus, it is deslrable to test an optimum, but relatively small, number of sam-
ples and to develop analytical procedures that yield material parameters with a
high degree of accuracy.

A number of commonly used uniaxially loaded test specimens can be used to
measure ceramic fast-fracture strength over a wide range of temperatures.
These material characterization tests are derived from observed failure modes.
The Army Specification (ref. I) describes a test method for determining the
flexure strength, or modulus of rupture (MOR), of brittle beam test specimens
at ambient temperatures. Because of the scatter in observed strength values,

many samples (typically 30 or more MOR bars for a specified temperature) are
required. Fractography is required after fracture to separate flaw populations
and to identify failure modes. The major advantages of this testing method
include simple fixtures, low cost, and the ability to cut small test specimens
out of component bulk.

However, an inherent weakness of flexure testing is that it emphasizes sur-
face flaws relative to volume flaws. It also needs a greater order of magni-
tude of volume and area scaling between the specimen and the entire component
geometry. To alleviate these problems, considerable effort has been focused on
developing and using tensile fast-fracture tests. One form of these tests,
recently developed at Oak Ridge National Laboratory (ORNL), uses a hydraulic
self-aligning grip system (ref. 2). Nith the tensile test specimen, the entire
gage material volume (which is generally much larger than in the flexure speci-
men) is loaded to the same maximum stress, and many successful tests produced
near zero bending during monotonic tensile and cyclic tension-tenslon loading.
With the emerging importance of ceramlc tensile testing, the need for a smaller
number of specimens, more advanced statistics for data reduction, and more
selective testing than with MOR bars is evident.

Two main classes of fracture theory have been previously discussed in the
literature. The first is derived from Griffith's flaw theory (refs. 3 and 4)
which assumes the presence of cracks of specified sizes, shapes, and arbitrary
orientations. There is always one crack with the least favorable orientation
that causes failure. The second class consists of the weakest link theory (NLT)
such as that of Weibull (ref. 5). This theory is purely statistical in nature.
Failure in ceramics is due to a single weakest flaw where the local stress
reaches a critical value. The inability of current inspection procedures to
fully characterize flaws and the observed size effect on strength makes it nec-
essary to use statistics and reliability analysis to predict failure of brittle
material components.

Weibull (ref. 6) used the NLT to develop a probabilistic approach to
account for the scatter in the fracture strength and the size effect of brittle

materials. He assumed a unlque cumulative strength distribution for the uniax-
ial fracture data obtained from simple test specimens. Neibull also adopted
uniaxlal fracture test parameters for calculating the failure probability in
multidimensional stress states. The concept focuses on calculating the risk of

rupture by averaging the normal tensile stress at any point in principal stress
space. Thls approach iS plausible, but rather arbitrary, and requires numeri-
cal modeling. Consequently, other models were proposed, and the most widely
used model assumes that the principal stresses act Independently (PIA)
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(ref. 7). However, the PIA hypothesis may lead to unsafe estimates of failure
probability because it neglects the effects of the interaction of combined
local principal stresses (ref. 8).

Ceramic strength is well represented by the Neibull distribution which is
fully characterized by its statistical parameters. Batdorf and Crose (ref. 9)
proposed a new physically based statistical theory, which describes the mate-
rial strength by a flaw-density function. This strength parameter is usually
expressed in terms of a power function with appropriate flaw-density constants.
It is then a slmple matter to derive relationships between the Neibull parame-
ters and the Batdorf flawZdensity constants, so that the same material strength
distributions are consistently obtained from both. Rufin etal. (ref. I0)
further extended the Batdorf statistical theories to investigate effects of dif-
ferent flaw geometries and mixed-mode fracture criteria on overall material
reliability. Gyekenyesi and Nemeth (refs. 11 and 12) developed a public domain

computer program incorporating the preceding theories which could be coupled to
a general purpose finite element code such as MSC/NASTRAN (ref. 13) to predict
the fast-fracture failure probability Of ceramic components due to the presence
of volume- and surface-type flaws.

The primary objective of this paper is to describe the estimation of the
Neibull strength parameters and the Batdorf flaw-density constants for volume-
and surface-flaw-induced fracture in ceramics. An extensive literature survey
of various statistical estimation techniques was conducted and discusslons were
held with numerous researchers in the field. The goal was to quantify the
uncertainty by using analytical methods. Many modern Weibull parameter estima-
tors (ref. 14) are efficient and provide confidence intervals. Mann etal.
(ref. 15) discuss moment estimators, least-square estimators, best least invari-
ant estimators, and maximum likelihood estimators (MLE's). The evaluation of
shape and scale parameters of the two-parameter Heibull distribution is
explained initially in this paper by using the least-squares analysis (ref. 16).
This method obtains, analytically, a unique line of best fit to describe the
scatter in ceramic strength.

The MLE's have the smallest mean-square error, and Bain and Antle
(ref. 17) found them to be the most efficient of the available methods. How-
ever, MLE's are highly biased for small samples, and, consequently, the MLE of
the shape parameter is often unbiased to elimlnate the deviation between the
sample and true population. Important design criteria should not be derived
from small sample sizes because uncertainty is known to increase as the number
of samples decreases. Menon (ref. 18) describes the derivation of the maximum
likelihood equations based on the assumption that the location parameter
(threshold stress) is known. This method was further extended by Cohen
(ref. 19) for singly censored samples. For small to moderately large sample
sizes, distribution percentiles of the MLE's and unbiasing factors for the
shape parameters have been computed and tabulated by Thoman etal. (ref. 20)
through the use of Monte Carlo simulation procedures. Jeryan (ref. 21) devel-
oped a FORTRAN computer program to calculate the MLE's and other related
statistical parameters for uncensored statistics. This paper summarizes the
equations and procedures that are necessary for evaluating the MLE's of the
shape and scale parameters, the Weibull mean values, and the corresponding
standard deviations (ref. 22) by using theories of concurrent flaw distribu-
tions (ref. 23). The Weibull log likelihood equations for censored statistics
were developed by Nelson (ref. 24) and used to calculate the MLE's for the cen-
sored data using Newton-Raphson iterative techniques. Procedures to evaluate



90-percent confidence intervals for MLE's of the shape and scale parameters and
the unbiased estimates of the shape parameters for uncensored statistlcs are
explained. No rigorous studies are knownto the authors that evaluate the con-
fidence intervals for MLE's of shape and scale parameters and the unbiased
estimate of shape parameter for censored statistics. However, a Monte Carlo
slmulatlon is developed and tested for censored statistics, and the results are
included in this paper.

An outlier is a data value that is far from the rest of the sample. There-
fore, techniques are needed that detect outliers to reveal faulty products as
well as to improve poor test data. Stefansky (ref. 25) describes a procedure
for calculating critical values of the maxlmumnormedresiduals while testing
for outliers. This technique is based upon the normal distribution, and its
application to Neibull data is of concern. However, it was used by Neal et al.
(ref. 26) to calculate the critical values for different significance levels.

Sample slze-dependent polynomial approximating functions have been developed to
compute the critical values at I-, 5-, and lO-percent significance levels, and
these functions are described in this paper.

Manygoodness-of-fit tests based on empirical distribution functions (EDF)
have been extensively discussed by D'Agostino and Stephens (ref. 27). The EDF
statistics measure the discrepancy between the EDFand a given distribution
function. Five of the leading EDFstatistics, including the Kolmogorov-Smirnov,
the Cram_r-vonMises, the Kuiper, the Natson, and the Anderson-Darling have
been examined by Stephens (ref. 28). The Kolmogorov-Smirnov (K-S) test for
goodness-of-fit is the most widely used in comparing an empirical distribution
function with the distribution function of the hypothesized distribution for
any finite sample sizes (ref. 29). Critical values of the maximumabsolute dif-
ference between sample and population cumulative distributions have been tabu-
lated by Massey (ref. 30). Percentage points in Kolmogorov-Smirnov statistics
for probabilities from 0.01 through 0.20 were tabulated by Miller (ref. 31) for
different sample sizes. This work was further extended by Amstadter (ref. 32)
in evaluating values for probabilities from 0.30 through 0.99. The Anderson-
Darl_ng (A-D) statistic A2 (ref. 33) has proven more sensitive to the discrep-
ancies in the tail regions between the EDFand the cumulative distribution
function. Lew_s(ref. 34) discusses the Anderson-Darling statistic for a fully
specified distribution. This paper summarizesthe steps to calculate the
Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics by uslng
polynomial approximating fun_tlons to represent available tabular values from
the literature.

Confidence bands (ref. 35) on the Neibull line can be calculated and plot-
ted (ref. 36) for different confidence levels by making use of the meanand the
standard deviation of the sample. This paper also explains the calculation of
90-percent confidence bands about the Neibull distribution.

Also, several currently used theories that can be used for calculating the
Batdorf flaw-density constants from the Neibull distribution statistical param-
eters are selectively _ncluded in this paper. The most widely used model among
these theorles assumesthat the cracks are shear-insensitive. Different rela-
tionships are obtained, however, if shear-sensitivity of the flaws is included.
Finally, all the statistical techniques summarizedhere were verified with sev-
eral example problems from the open literature, including the problem of deep-
groove ball bearlngs (ref. 37) and the recently obtained Elecktroschmelzwerk



Kempten (ESK) hot isostatically pressed HIPped silicon carbide (ref. 38)
strength data.

PROGRAMCAPABILITYANDDESCRIPTION

Volume- and surface-flaw-based reliability analysis has been implemented
in both the SCARE1and SCARE2verslons of the postprocessor program (refs. II
and 12). The SCARE1version of the code uses only elemental centroidal princi-
pal stresses to calculate the reliability for both volume and surface elements.
In SCARE2,all linear or quadratic QUAD8shell elements are further discretized
into nine subelements with interpolated centroidal principal stresses and sub-
element areas used to perform reliability analysis. A similar discretization
of brick volume elements into 27 subelements is performed for volume-flaw-
based reliability studies. Both verslons of SCARE have broad capabilities:
.Temperature-dependent multiple-flaw populations, statistical material parame-
ters, several crack conflgurations, and a number of well-known fracture criteria
can be specified. The existing architecture and basic computational elements
of the programs were described in previous publications (refs. II and 12). Fig-
ure I shows the flowchart for calculation of shape and scale parameters of the
two-parameter Neibull distribution using the least-squares analysis and the max-
imum likelihood methods for volume- and surface-flaw-induced fracture In ceram-
ics with complete and censored samples, and the calculation of many other
related statistical quantities. For convenience, these latest additions to the
SCARE program can also be used independently of the MSC/NASTRAN postprocessing
or without performing a reliability analysis.

INPUT INFORMATION

SCARE input requirements are grouped into three major categorles: the
Master Control Deck, the Specimen Deck, and the Structures Deck. The details
of the deck functions are explalned In reference II. For the calculation of
shape and scale parameters of the two-parameter Weibull distribution, the data,
which includes the fracture origins of the specimen, is entered in the Specimen
Deck. Initially, for the statistical analysis of both complete and censored
samples, each specimen fracture mode is observed by fractography or other means
and identified as failed either by volume-flaw- or surface-flaw-induced frac-
ture, V and S, respectively. If there is any uncertainty regarding a failure
mode, it is input as an unknown failure mode U. The user can select any of
the following three options of calculations for complete samples: Volume flaw
analysis only, surface flaw analysis only, or both in one execution. For the
last selection, two separate extreme fiber fracture stress data sets (which may
be completely identical) are requlred for the analysls. The same user options
are available for censored samples. When the third choice is selected, volume-
flaw analysis will be done by treating surface-flaw and unknown-flaw fallure
mode data as suspended items; surface-flaw analysis wi11 be done by treating
the volume-flaw and unknown-mode data as censored information.

OUTPUT INFORMATION

The details of SCARE output for a complete MSC/NASTRAN finite element
analysis are discussed in previous publications (refs. II and 12). The output
pertainlng to the calculatlon of the Weibull strength parameters identifies the



method of solution, the control index used for experimental data, the numberof
specimens in each batch, and the temperature of each test. In addition, the
output echoes the input values of all extreme fiber fracture stresses with
proper failure modeidentification. Any data value that is far from the rest
of the sample is detected as an outlier, and its corresponding significance
level (I, 5, and I0 percent) is printed. Furthermore, the biased and the
unblased values of the shape parameter, the specimen characteristic strength,
the upper and lower boundvalues at 90-percent confidence level for both the
shape parameter and the specimen characteristic strength, the specimen Neibull
meanvalue, and the corresponding standard deviation are printed for each speci-
fled temperature. For censored statistics, the above values are generated
first for volume-flaw analysis and, subsequently, for the surface-flaw analysis.

The Kolmogorov-Smirnov goodness-of-fit test is done for each data point,
and the corresponding K-S statistic factors D+ and D- are listed. Similarly,
the K-S statistic for the overall population is printed along with the percent-
age significance level. This overall statistic is the absolute maximumof indi-
vidual data D+ and D- factors. For the Anderson-Darling goodness-of-fit test,
the A-D statistic A2 is determined for the overall population, and its associ-
ated significance level is printed.

The next table of the output contains fracture stress data, the correspond-
ing Weibull probability of failure values, the 90-percent upper- and lower-
confidence band values about the Weibull llne, and the median rank value for
each data point. These statistical quantities are calculated by using either
tabular values or approximating polynomial functions which are now incorporated
into the_SCAREprogram. Finally, the material parameters used In component
reliability calculations are listed as a function of temperature. These
include the biased Weibull modulus, the Batdorf crack-density coefficient, and
the material Neibull scale parameter or unit volume and area characteristic
strength, whichever is appropriate.

THEORY

The weakest link theory of material strength considers not only the size
effect and loading system, but also the variation in fracture strength due to
intrinsic defect distributions. Paluszny and Wu(ref. 39) discuss evidence of
adequate correlation between the reliability predictions of complex structures
based on simple test bars using the Weibull methods and the experimental
results. It is possible to use the Neibull distribution to model a broad range
of instantaneous failure rates and also to represent several componentfailure
mechanisms. It has been shownthat experimental fracture strength data
obtained from uniaxially loaded specimens is best approximated by the three-
parameter Neibull distribution, defined by

Pf : 1 - exp (I)

where Pf is the probability of failure, a is the applied tensile stress, qu
is the threshold stress (location parameter usually taken as zero for ceramics),
ao is the scale parameter with dimensions of stress x (volume)I/m , m is the
shape parameter (or the Neibull modulus) which measures the degree of strength
variability, and V is the stressed volume. A similar equation can be written



for area-flaw-induced failure with area parameters replacing corresponding
volume variables.

The location parameter is the value of a below which the failure proba-
bility is zero. Similarly, the scale parameter corresponds to a stress level
where 63.2 percent of speclmens with unit volumes would fracture. The Weibull
modulus is a measure of the strength dispersion, and as m increases, the
strength becomes increasingly deterministic. Values of m = 3.44 and m = l
give, respectively, the normal <approximate) and true exponential distribution
curves as shown in figure 2. For large values of m (m > 40), such as those
obtained for ductile metals, the scale parameter corresponds to the material
ultimate strength. Typically, for brittle materials, the Neibull parameters
are determined from simple geometry and loading conditions, such as beams under
flexure or cylindrical or flat specimens under uniform uniaxial tension.

The Outliers

Before computing the estimates of the Neibull parameters, the available
specimen fracture stress data must be carefully examined for outliers. Very
often a data set may contain one or more values at the extremes which may not
belong to the main trend of the overall population. Such data points or values
are labeled as outliers. It is not always possible to notice these outliers
without having a complete and thorough knowledge of the manner in which the
data is obtained. However, from statistical computations, the outliers can be
detected at different significance levels.

At the start of the outlier calculations, the sample mean _f and the sam-
ple standard deviation s are calculated. From these values, the normed resld-
uals _i for each sample are obtained as follows:

ofi - of
Fi - s ' i : 1,2, ., N (2)

where N is the sample size. The normed residuals are normalized deviations
of the data from the "center" of the data. The absolute maximum of the normed
residual (MNR statistic) is compared to the critical value (CV), associated
with the sample size. Critical values are calculated from the following
equation:

N - I -/ t 2
CV (3)

_-N'- - 2 + t 2

where t is the (I - _/2N) quantile of the t-distributlon with N - 2 degrees

of freedom, and _ is the significance level. Separate polynomlal approximat-

ing functions for sample sizes to 30 and above 30 have been developed for calcu-

lating CV at the appropriate significance level and are included in the SCARE
program. These functlons evaluate the critical values at l-, 5-, and lO-percent

significance levels. If the MNR statistic is smaller than the three critical

values, then no outliers are detected. However, if the MNR is larger than at

least one of the three critical values, the corresponding data value with the

MNR statistic is detected as an outlier with the appropriate signlficance level.
Once all the deviant points are detected, each potential outlier is retested

against the remaining "good" data, and the results of this test are printed in

the program output.



It is sometimes appropriate to omit the outliers and continue with the
remaining analysis treating the reduced sample as a new sample or as a censored
sample. But the rejection of outliers, strictly based on statistical analysis,
can be misleading. Therefore, this technique of detecting the outliers should
be used as a means of ascertaining the relative validity of the available data.

Figure 3 shows the existence of a potential outlier In a data set for sintered
Si3N 4 generated at NASA Lewis Research Center in cooperation with Oak Ridge
National Laboratory. It appears that competing failure modes exist, and an
outlier point is seen at the high-strength range of the data. Since fractogra-
phy was not performed, the two Neibull distributions shown are assumed.
Weibull parameters were only calculated for the combined distribution, which
was treated as a complete sample, and its plot is also shown.

Estimation of Statistical Material Parameters

The flexural test failure probability can be expressed in terms of the
extreme fiber fracture stress of, or MOR, using the Neibull form as

Pf = 1 - exp[-Co_] = 1 - exp[-C(MOR) m] (4)

where C = (I/o(9) m and oe is the volume/area specimen characteristic
strength, or characteristic modulus of rupture MORo. In equation (I), oo is
based on unit volume; whereas in equation (4), oe includes effects of the spec-
imen volume. A sample may only contain data from specimens that failed either
from a surface flaw or from a volume flaw. Such a sample is usually called a
complete sample. In some cases, specimens in a sample may not fail by one fail-
ure mode only, but by several competing failure modes. Such a situation exists
in the case of concurrent flaw populations. Each specimen fracture origin is
identified by fractography and then labelled as failed either due to a volume
flaw or a surface flaw. For the computer input, these failure modes are denoted
as V and S, respectively. Occaslonally, some specimen fractures may not be
identified directly due to uncertainty in the dominance of failure modes. Such
data are grouped into an uncertain category and are denoted by U. Thus, the
sample containing data from the mixture of failure modes, and sometimes inclu-
sive of unknown failure modes, is referred to as a censored sample.

Many methods are available to estimate the statistical material parameters
from experimental data. The success of the statistical approach depends on how
well the probability function fits the actual material measurements, especially
how accurate the value of m is. The two most popular models used to evaluate
C- and m are the least-squares analy_s and the maximum likelihood methods.
These statistical techniques are described in detail in the succeeding sections.

The Least-Squares Analysis

The survival probability of a ceramlc specimen in flexure strength testlng
is defined as

Ps : exp[-Co_] (5)



Thls equatlon can be linearized by taking the natural logarithm twice to obtain

_ p = fl,n C + m Q,n of (6)

If the failure probability Pf is determined from conducting

bering the observed fracture stresses as Ol, 02, ., oi,
ascending order, then

N tests and num-

., oN in an

i
Pf(°i) - N + 1 (7)

where i is the median rank. A more sophisticated treatment using median rank

regression analysis gives the following result (ref. 36):

i -0.3
Pf(°i) - N + 0.4 (8)

The difference between equations (7) and (8) becomes insignificant for large
values of N. However, equation (8) is used in the remaining analysis as well
as In the code. For the least-squares analysis, it is necessary to obtain the
line of best fit with slope m and an intercept b which, as can be noted
from equation (6), is equal to the natural log of C. By differentiating the
sum of the squared residuals with respect to m and b separately, setting
the results equal to zero, and then simultaneously solving for m and b, we
obtain

"]]"iYl - ExiEYi
m = (I0)

-ExiExI

where Yi and xi are also obtained from equation (6). Thus, the material

constants are calculated from known fracture stress data ofi at a specified
temperature. With censored data, one cannot directly use the median rank

regression analysis as given in equation (8) because of the presence of compet-

ing failure modes. To take into account the potential influence of the sus-

pended items, Johnson (ref. 40) developed the rank increment technique, which

is calculated from the following equatlon taken from reference 36:

Rank increment =
(N + I) - (previous adjusted rank)

1 + (number of items beyond present suspended item)
(II)

As mentioned earlier, all observed fracture stresses are arranged in

ascending order, and rank increment values are calculated for each failure data

by using equation (ll). For volume-flaw analysls, all MOR's designated as

V's are considered as failure data; for surface-flaw analysis, the S's are
considered as failure data. According to the procedure discussed in refer-

ence 36, the new adjusted rank values are obtained by adding the rank Increment

value to the previously adjusted rank. These adjusted rank values are then



used to calculate the failure probability Pf by using median rank regression
analysis (i.e., eq. (8)). Finally, the Weibull parameters m and C are
obtained by solving equations (9) and (I0), except that N now only includes
the number of failed samples and not the total samples as in the case of com-
plete (uncensored) data.

The least-squares analysis is a particular case of the maximum likelihood
method, if we assume that the error is normally distributed with zero mean and
constant variance. Somerville and Bean (ref. 41) compared the least-squares
analysis and the maximum likelihood methods for different sets of conditions.
The study concluded that when the data fits the Neibull distribution, both tech-
niques produce substantially the same results. The least-squares analysis is
most useful in situations where the underlying probability distribution is not
clearly established, and it is more robust for minor departures from the
Neibull distribution. In addition, the least-squares analys_s may give better

results for censored samples. While discussing the statistical approach to
engineering design in ceramics, Davies (ref. 42) noted that the least-squares
analysis gives better estimates of the parameter if a single anomalous high-
strength value is present In the sample. King (ref. 43) determined the accuracy
of the estimates of the Neibull parameters by using the prediction interval
method, and he showed that the sampling distribution of the regression coeffici-
ents follows a t-distribution. This _s true only if the error is normally dis-
tributed with zero mean and constant variance. Therefore, the least-squares
analysis method is usually not suited to calculate confidence intervals and
unbiaslng factors and to take into account any uncertainty in the available
data. For that reason, the maximum likelihood method has been extenslvely used
in Weibull analysis and is discussed in detail here.

The Maximum Likelihood Method

The maximum likelihood method is often used because of certain inherent
properties. The likelihood equation from which the MLE's are obtained has a
unique solution. In addition, as the sample size increases, the solution con-
verges to the true values of the parameters, and, therefore, the solution is an
asymptotically normal and asymptotically efficient estimate of the parameters.
Oeryan (ref. 21) compared the maximum likelihood method to the method of
moments and the pseudo-least-squares analysis for random sample sizes with
assigned values for the Neibull parameters. It was concluded that the MLE of
the Neibull slope showed the least bias and variance. According to Sonderman
et al. (ref. 44), the maximum likelihood method is a wholly parametric tech-
nique, dependent on the form of the Neibull distribution to obtain its esti-
mates. A comparative study (ref. 44) between the mean order, the hazard
plotting, and the maximum likelihood estimates indicated that the MLE of the
shape parameter was reasonably accurate for small samples. For complete as
well as censored samples, no ranking functions or linear regression analysis
are used while using the maximum likelihood method.

The likelihood equation is wrltten by expressing the probability of obtain-
Ing the observed data. For the complete sample, the likelihood function is
defined by

N

L : ]r[ f(of i) : f(of l)f(af2 ) f(afN)
i:l

(12)

I0



In the analysis of failure of brittle materials subjected to unlaxial stress
states, the Neibull probability density function is

(13)

and the corresponding 11kelihood function is

L= I-[ m _°fi ml
i=1 \a8 J exp-, afi.L \°e Y J

(14)

In equation (14), the "likelihood" of the sample failure data _fl, af2 .....
_fi, ., afN is a function of the Weibull parameters m and ae. The val-
ues of m and oe which maximize the ikelihood function are determined by
the maximum likelihood method. By differentiating the logarithm of the likeli-
hood function with respect to m and oe, and then equating the resulting
expressions to zero, we obtain the MLE's of m and oe by solving the result-
ing simultaneous equations.

In the complete sample case, the MLE of the shape parameter m, denoted by
m, should satisfy the followlng equation (ref. 36)"

N

(afi)m_n(_fi)
i=1
N

i=l

-- i

N

N

_>"_En(ofi ) - = 0
1

i=I

(15)

The Newton-Raphson iterative technique is used to solve equation (15) and to
_alculate m. Furthermore, the MLE of the Neibull parameter _e, denoted by
ae, is evaluated by solving the following equation:

l/m

)-- =I <zfi

aS= " N
(16)

However, if the sample is censored and the effect of a competing fallure mode
Is taken into account, tie following equation is solved by iterative techniques
to obtain the value of m (ref. 36)"

N

(_fi)m_n(_fi)
i=1

r

1
_ _Q.n(<_fi ) 1 0

r
I=1

(17)
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In the preceding equation, r is the remaining numberof _pecimens failed
either by volume flaw or by surface flaw only. Finally, me is obtained from

me = (18)

In the previous cases, the MLEof the Neibull parameter C, as used in equa-
tion (4), is calculated by using the previously explained conversion technique.
Incidentally,^the MLE's of m and me for the volume-flaw a_alysls are denoted
by mV and meV; for the surface-flaw analysis by mS and oeS, respectively.
Similarly, the parameter C is denoted as CV and CS.

As shown in figure I, the least-squares analysis is always done first,
irrespective of the method of analysis chosen. However, if the maximum likeli-
hood method is selected, the initial estimate of the shape parameter for the
iterative technique is set equal to the value of the parameter that is obtained
from the least-squares analysis. This is convenient for computation, and the
number of iterations in the Newton-Raphson technique is arbitrarily limited to
50. If no solution is found after 50 iterations, the maximum likelihood method
is terminated, and the results from the least-squares analysis are used for fur-
ther calculations in the program for both complete and censored samples.

Unbiasing Factors and Confidence Intervals

In the previously described maximum likelihood method, the MLE of the
shape parameter is a blased estimate that depends on the number of specimens in
the sample. Consequently, this parameter may not represent the true popula-
tion. To minimize the deviation between the sample and the total population,
the shape parameter estimate should be unbiased. Statistically, an estimator
of any parameter is called an unbiased estimator if the mean of the estimators
of its sampling distribution equals the value of the parameter itself. The non-
zero difference between the estimator of the parameter and the parameter Itself
is called the bias of the estimator. Estimates are random variables, and a
thorough understanding of the accuracy of the parameters estimation is needed.
This is usually achieved by obtaining the confidence intervals of the distribu-
tion parameters. If the variable e and a quantity e*, respectively, define
the estimated and the true value of the parameter, then according to Siddall
(ref. 45), the confidence Interval is defined as an interval in e that will
include the unknown value e* with a probability B, where B is called the
confidence level or confidence coefficient. The related uncertainty with the
parameter estimate Is based on a sample of data, and a different data set of
the same size will yield different results. In general, the confidence inter-
vals depend upon the sample data and not upon the parameters themselves. Conse-
quently, the unbiasing factors, as well as the confidence intervals, play a
major role in the analysis.

Thoman et al. (ref. 20) obtained the unbiasing factors for the MLE of m
for complete samples by initially obtalnlng the MLE of m for a standard expo-
nential density function, which is a two-parameter Neibull density function as
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given in equation (13) with unit values of m and a8. The unbiasing factors
for the MLEof m in reference 20 depend on sample size. The unbiased esti-
mate of m is obtained by multiplying the biased estimate of m with the
unbiasing factors. The percentage points of the distributions of MLE's were
evaluated and then used to calculate the confidence intervals for MLE's at sev-
eral confidence levels for complete samples (ref. 20). McLeanand Fisher
(ref. 46) discuss the uncertain nature of Neibull parameters estimations.
Figures 4 and 5, taken from reference I, show90-percent confidence bounds for
the Neibull modulus and the characteristic strength. As can be seen from the
graphs, the error or the uncertainty in estimates from a small sample size is
very large. The curves in figures 4 and 5 are obtained from tables 1 and 4 of
reference 20.

A methodof obtaining definite confidence intervals for censored samples
has not yet been developed because of the additional complexity of competing
failure modes. However, the effects of competing failure modes were examined
through a Monte Carlo simulation on a limited trial basis by the authors. The
investigation was performed by assigning two specified Neibull distributions as
the parent populations, running a Monte Carlo simulation to mimic the competing
failure modes, and recovering the MLE's for those trials, where a predetermined
number of failures from a given mode occurred. It is estimated that I0 000
trials provide reasonable accuracy when calculating the 90-percent confidence
limits of the parameters. Wetherhold (ref. 47) discusses in detail the statis-
tical reasoning for the proper selection of the number of trials in the Monte
Carlo simulation. With this method, the effect of sample size, including a
given percentage of failure modes from the trial runs, indicated that the per-
centage points of the distribution asymptotically approached the complete sam-
ple case and depended on the number of failures for each failure mode.

It is clear from the preceding discussion that a knowledge of the upper
and lower bound values of the MLE's of both parameters at any confidence level
is necessary. This enables the user to estimate the uncertalnty in the parame-
ters as a function of the number of specimens. It is general practlce to
obtain these bounds at 90-percent confidence level, and, therefore, 5 and
95 percentage points of distribution of the MLE's of the parameters have been
incorporated into the SCARE program, with data taken from reference 20. Fur-
thermore, this also assures that if different data sets are used in the maximum
likelihood method, then 90 percent of the time, the MLE's of the parameters
will lie between the upper and lower bound values. The following equations
describe the manner in which the different limit values are calculated at
90-percent confidence level.

mBIAS (19)
mUpP -

m5%

_BIAS
mLOW = ^ (20)

m95%
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°e

exp - a05%

mBIAS

(21)

_OLow=

° e (22)

where a minus slgn has been used in equation (21) to account for the data for-
mat. To calculate the upper and lower bound values, 5 and 95 percentage points
of the distributions of the MLE's are used, respectively. All these values

depend on the blased value of the MLE of the shape parameter, denoted by
mBIAS. Jeryan (ref. 21) used the unbiased value of the shape parameter MLE to
calculate the upper and lower bounds, while Thoman et al. (ref. 20) used the
biased value as done here. Different approximating equations for these bounds
can be found in reference 36 for complete samples.

The Weibull Mean and the Standard Deviation

After evaluating the MLE's of the Weibull parameters, the Weibull mean
and the standard deviation s can be obtained by using the following two
equations (ref. 22)"

I;e)FI)m0 As (23)

S -_

I/2

(24)

where £ denotes the gamma function. These equations are valid for both area-

and volume-based flaw strength. Equations (23) and (24) indicate that as m

increases, the mean of the distribution approaches the specimen characteristic

strength, and the standard deviation approaches zero. We can also note that

the specimen characteristic strength oe is related to the material scale

parameter ao through the specimen effective volume/area relationship of

,I/mv I/ms
aoV = _eVVe or ooS = aeSAe

Goodness-of-Fit Tests

Graphical techniques can often be used to determine whether or not a set
of observations belongs to a population distrlbutlon. A discussion of these
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methods for the Neibull and the lognormal distributions is given in refer-
ence 15. Subjectlve judgment is needed to test the goodness-of-fit of the data
to the assumeddistribution. In many instances, it is difficult to decide if
the hypothesized distribution is valid. Therefore, classical statlstics tests
are used in verifying the available data.

In general, a statistic is a numerical value determined from a sample by
using statistical computations. The difference between an empirical distribu-
tion function (EDF) and a given distribution function is called an EDFstatis-
tic. There are two major classes of statistics, and they differ in the manner
in which the functional (vertical) difference between the two distribution func-
tions is calculated. The supremumclass statistic calculates the largest and
smallest vertical differences between the two distribution functions. On the
other hand, the quadratic class statistic measures the discrepancy between the
two distributions through squared differences and the use of an appropriate
weighting function.

The Kolmogorov-Smirnov goodness-of-fit statistic belongs to the supremum
class and is very effective for small samples. To begin the K-S test, the sam-
ple is arranged in ascending order, and the EDF, FN(X), is obtained by using
the following expressions (ref. 27):

FN(X) = O, x < X(I ) 1

i i = 1,2 N-IFN(X) : _, X(i ) ! x < X(x+l ), , .,

FNiX) = I, X(N ) _ x

(25)

where Xl, x2, ., x N are from the sample. Figure 6 shows the step func-
tion calculated from the data. It is obvious that as x increases, the step
function FNiX) steps up as an individual sample observation is reached. For
any x, FNiX) denotes the proportion of observations less than or equal to x;
F(x), defined as the distributlon function, is the probability of an observa-
tion less than or equal to x. The main intent of the K-S test is to calculate
the well-known EDF statistic D, which Is the maximum absolute vertical differ-
ence between the hypothesized cumulative distribution function Fix) and the
EDF function FN(X). As shown in figure 6, the statistic D is obtained by
initially evaluating two other statistics D+ and D-, the largest vertical
differences when FN(X) is greater than Fix) and the largest vertical differ-
ences when FN(X) is smaller than Fix), respectively. In the SCARE program,
all three statistlcs are calculated by using the following expresslons
(ref. 28):

i
D+: F<x) I

D : F(x) i -
i = 1,2, ., N

D = max(D + or D-)

(26)

For ceramics design, the Fix)i's are equal to Pf's and are calculated
by uslng equation (4). These are also referred to as the predicted failure
probability for each fracture stress level and are evaluated by using the
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biased values of the MLE's of the Weibull parameters. In the censored samples,
the presence of two concurrent flaw populations makesit essential to calculate
the cumulative survival probability first. This is accomplished by using
equation (5) separately for volume and surface flaws, and then by multiplying
the survival probabilities of the two concurrent flaw populations. Finally, the
resultant predicted failure probability at each stress level is calculated by
using the entire sample.

It is customary to express the EDFstatistic D with an associated signif-
icance level _, which is the probability of obtalning a higher maximumabsolute
difference assuming that the data follows the theoretical distribution. This
probability is a function of D and the sample size N. Miller (ref. 31)
described a general formulatlon for evaluating _ as follows:

2
: (27)

exp[2D2 (I-NON5.)2]

For sample sizes of 30 or less, the values of _ obtained by using equation
(27) are equal to the values given in reference 32. However, for sample sizes
greater than 30, a separate formulation is used based on the discussion by
Brunk (ref. 48), and Is given by

or

Oo

°=2  i,Ji ex0[2j202]
j=l

--__exp[-(2J - I)2 _-_]
j=l

(28)

In the SCARE program, the EDF statistics D+ or D- are calculated for every
speclmen fracture stress level. Then the EDF statistic D and the associated
significance level are determined for the total sample size. A higher value
of _ Indicates that the data fits the proposed distribution to a greater
extent.

The Anderson-Darling statistic A2 belongs to the quadratic class and is
a powerful statistic for goodness-of-fit measure. Thls approach measures the
discrepancy between the EDF and the hypothesized cumulative distribution func-
tion by using the Cram6r-von Mises formulation (ref. 27):

(;o

Q : N ]_ {FN(X) - F(x)} 2 9(x)dF(x)
--00

(29)

where _(x) is a suitable weighting function applied to the squared difference.
Anderson and Darling (ref. 33) introduced the Az statistic by defining 9(x)
= [{F(x)}{l - F(x)}] -I In equation (29). This statistic is more suitable for
identifying the discrepancies in the tail regions of the distribution. The con-
cept of the probability integral transformation (PIT) is discussed in detail in
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reference 27. In this procedure, a new randomvariable Z, which is uniformly
distributed between 0 and I, is introduced so that Z = FIX), when Fix) is the
true di stribution of X. The

cZIA2 which is given by (ref. 27)"
"s are then arranged in ascending order and

used to calculate the statisti

N

i=l
(30)

In this case, Zi's are the predicted failure probabilities obtained from equa-
tion (4). It can be shown that for N > 3, the distribution of A2 is suffici-

ently independent of the sample size.

Lewis (ref. 34) discussed the asymptotic distribution and gave the values
for the A2 statistic and the corresponding significance levels. These values

are summarized in reference 27. We have developed several approximating polyno-
mial functions to interpolate these values. If the A2 statistic is too large,

the data should be rejected because the EDF fits the proposed distribution

poorly. Otherwise, the significance level for the sample is calculated by

using the A2 statistic and the corresponding polynomial function. Once

again, the higher the value of _, the better the data fits the proposed
distribution.

Confidence Bands on the Weibull Line

Kanofsky and Srinivasan (ref. 35) described a method for constructing a
confidence band on a continuous distribution function which may have normal,
exponential, and many other functional forms. They introduced and defined the
random variable L, (the statistic [) as

L = maXx F x',Wp - F(x', _,s) (31)

where _d r_(D' x, and s are, respectively, the population mean, the popula-tion st a deviation, the sample mean, and the sample standard deviation.
The population parameters #p and (p are unknown values. The sample is
drawn from a continuous population distribution. In equation (31), the statis-
tic [ is the maximum absolute difference between the two cumulative distribu-
tion functions. The distribution of the statistic [ is obtained in two
stages: (I) The closed-form expressions for [ are derived. These expres-
sions are fu_;ctions of _ and s; and (2) these expressions derive the distri-
bution of [ by using Monte Carlo simulation. The random variable [ is then

used to construct different percentage confidence bands on Fix; #p, (p) cen-
tered around Fix; _, s). This is similar to the use of the K-S statistic D
in constructing a confidence band on any continuous cumulative distribution
function centered around the EDF.

Abernethy et al. (ref. 36) extended the procedure by modeling the sample
and its parent population with the Weibull distribution. Equation (32), with

tabular data of KiN) from reference 36, is used in calculating the 90-percent

confidence bands about the Neibull distribution for complete samples only.

Thus,
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Confidence bands = [F(x) - K(N), F(x) + K(N)] (32)

where F(x) is the failure probability obtained by substituting the MLE's of
the Neibull parameters in equation (4). The Kanofsky functions, denoted by
K(N), depend on the sample size. Me have developed two sample-size-dependent
approximate polynomial functions to interpolate these values, and we have incor-
porated them into the SCARE program. The two terms in equation (32) give the
lower and upper 90-percent confidence band values about the Neibull distribu-
tion, respectively. Figure 7 indicates that for HIPped SiC flexure bars, the
fracture stresses lie between the confidence bands about the Neibull line.
The value of the statistic [ is 0.0829. It is also clear that the stress
data fits a single Neibull distribution quite well.

Batdorf-Neibull Statistical Parameters for Reliability Analysis

After evaluating the parameters C and m (either by the least-squares
analysis or by the maximum likelihood method) using data from four-point bend
bars or pure tensile specimens and after assessing the intrinsic uncertainties,
the parameters required in reliability calculations are determined. The
Neibull modulus m is directly used by all statistical fracture models and,
consequently, requires no additional calculations. However, for the Neibull
model the scale parameter oo is needed, while for the Batdorf approach the
flaw-density coefficient k B must be calculated. Both of these material con-
stants are functions of m, C, and specimen geometry. Details of evaluating
oo and k B are summarized elsewhere (refs. II and 12), but the results are
included here to show how the two sets of constants are related. For volume-
flaw analysis, using quadrant (L l = 2L2), four-point MOR bar data with known
geometry, ooV is calculated from

(L 1 + mvL2_)I I/mv

CV(m v + 1 ) 2J

(33)

For shear-insensitive fracture criterlon, kBv is obtained from

2Cv(mv + I)2 1kBv = (2my+ I)L_ i vmv >
(34)

where w is the width of the rectangular beam, h is the height, and L1 and

L2 are, respectively, the lengths between symmetrically placed outer loads and
Inner loads. By comparing equations (33) and (34), we concluded that when the
normal stress failure criterion is used, kBV and aoV are related by

kBV = _2mv + I_ I--]--_ mV
J\°oV]

(35)

However, for shear-sensitive fracture criteria when crack shape must also be
specified, the format of equation (35) changes according to the criterion and
the crack shape selected. In addition, if we note that CV : Veo_ V where

Ve is the effective volume, equation (33) can be solved for Ve to obtain
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/__h) (L1 + mvL2) = (mY + 2)
Ve = (mY + 1) 2 4(my + 1) 2 V (36)

where V = whL l, the total volume of the specimen. For uniaxial tensile load-

ing, the effective volume is equal to the specimen gage volume Vg,twhich is atthe same time the total specimen volume V of interest in that tes .

In surface-flaw-based reliability analysis, the effective area Ae for a
rectangular beam in four-point bending is (ref. 12)

A
e

11rmsw
2Ll(W + h)

(37)

In terms of Ae and the extreme fiber fracture stress of, we can rewrite equa-
tion (4) as

, L :o,Im'l (38)

Comparing equatlons (4) and (38) gives

{rAe_l/ms

°os: LCsJ
(39)

Finally, the Batdorf surface-crack density coefflcient kBS Is calculated from
(ref. 12)

3/2-ms F 1 ms-2 l/2

kB S _ 2 Ae CsmsIm S - I) ]_i (] + q) (I - rl) dn (40)

where n = [(2of/Oct) - I]. " Equation (40) can be integrated numerically by

using Gaussian quadratures to evaluate kBS. In pure tensile loading, the
effective area in equations (39) and (40) is Just equal to the specimen gage

area Ag.

Recently, it has been noted that equation (40) can be evaluated in closed
form to obtain

ms_v/'_I1(ms ) _i____ ms

kBS : r(ms + 1) \aoS j

(41)
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where F is the gammafunction, and Ae and CS were eliminated through the
use of equation (39). The last term in equation (41) is often referred to as
the uniaxial Weibull surface-crack coefficient, that is kNs = ao_S. To
derive equations (40) and (41), we have assumedthat the material is shear-
insensitive. Under this condition, the Batdorf flaw-density constant kBS is
identical with the polyaxial Neibull coefficient kwpS that can be obtained
from using the Neibull normal-stress-averaging method. In the previous equa-
tions, the parameters m and C are the biased MLE's of the parameters them-
selves for both volume- and surface-flaw fracture characterization. In the
SCAREcomputer program, equations (35) and (41) are used to calculate the mate-
rial constants kBV and kBS, respectively, for the Bartdorf shear-insensitive
model.

However, if we select shear-sensitive fracture criteria to convert MOR bar
or tensile fracture data into Batdorf-model crack-function coefficients, equa-

tions (35) and (41) will no longer apply. As an example, if we choose to model
both volume and surface imperfections as Griffith cracks (usually conservative
but not a good representation of flaws) and apply the total strain energy-
release-rate criterion (self-similar crack extension) to predict impending frac-
ture, the following equations are obtained:

kBV = (mv + ]_l I--]--_ mV
'\°ov)

(42)

(43)

In deriving equations (42) and (43), collinear crack growth was assumed, and the
results for typical values of mV and mS (mV = mS = I0.0) give considerably
smaller Batdorf flaw-density coefficients than those obtained from using the
previous shear-insensitive theory. Consequently, failure probabilities for a
g_ven structure will decrease when equations (42) and (43) are used to charac-
terize a mater_al. Presently, a new effort is underway to derive closed-form
solutions for the Bardorf coefficients by using out-of-plane crack extension
criterion (ref. 49) with the penny-shaped crack (PSC) for volume flaws and the
semicircular-edge crack for surface flaws. In the SCARE program, all these
user options are included, and results are obtained through numerical proce-
dures as in multidimensional stress states. It is important to note that using
the Batdorf theory requires no new material test procedures and data. The
knowledge of Weibull parameters m and oo, whether performing volume- or
surface-flaw analysis, is adequate for all fast-fracture-failure calculations.

DISCUSSION AND EXAMPLES

Several benchmark problems were analyzed from the open literature to calcu-
late the material strength parameters. The MLE's of the Weibull parameters for
the results of endurance tests of nearly 5 000 deep-groove ball bearings
(ref. 37) were compared and are included in table I. The test results, _n mil-
lions of revolutions, for 23 ball bearings were 17.88, 28.92, 33.00, 41.52,
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42.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88,
84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40. Table I shows
that the SCAREresults are very Close to that of Thomanet al. (ref. 20) and
Lieblein and Zelen (ref. 37). For the preceding data set, the data value
173.40 is detected as an outlier at l-percent significance level, the K-S sta-
tistic D is 0.1512 (fig. 6) at 66.7-percent probability level, and the A-D
statistic A2 is 0.3288 at 91.5-percent probability level. This indicates
that the data fits the hypothesized Neibull distribution quite well, especially
since only 23 specimensare available in this sample.

The IEA Annex II agreement (ref. 38) focuses on cooperative research and
development amongseveral countries in the areas of structural ceramics. In
November1986, 400 HiPped SiC flexure bars from Germanywere distributed by
ORNLto the five U.S. participating laboratories, including NASALewis Research
Center. The bars were fractured at these laboratories, and the fracture stress

data sets were returned to ORNLas complete data without censoring for differ-
ent failure modes. Details of the statistical analyses of these data sets are
given in reference 38. The results of 80 SiC flexure bars tested at NASALewis
were obtained, (table II) and analyzed by using our present enhancementto
SCAREto calculate the MLE's of the Neibull parameters. According to the
results in table III, the Weibull parameter values from SCAREmatch two other
predictions very well and are in reasonable agreement with the other three pre-
dictions, despite the use of different test operators, test equipment, and soft-
ware to reduce the data. The only difference between the SCAREand NASALewis
data shownis the use of different software to calculate m and oe. ASEA
CeramaHIPped Si3N4 bars (ref. 38) from Swedenwere also fractured at NASA
Lewis, and, subsequently, the shape parameter value was independently obtained
by using the least-squares analysis and the maximumlikelihood methods. This
data set has also been analyzed by uslng the SCAREestimators, and the compari-
son of results is shownin table IV. Finally, several proprietary Monte Carlo
simulated distributions were analyzed, and the results were consistently in
good agreement with those from other estimators.

CONCLUSIONS

The general purpose, statistical, fast-fracture probability code SCAREhas
been enhanced to include the details of calculating the shape and scale parame-
ters of the two-parameter Weibull distribution by using the least-squares analy-
sis and the maximumlikelihood methods for volume- and surface-flaw-induced
fracture in ceramics. If any sample, complete or censored, fits the Neibull
distribution, fhen these two methods are the most powerful and appropriate tech-
niques for obtaining the Weibull parameter estimates. In addition, for com-
plete samples only, the maximumlikelihood method enables the user to evaluate
90-percent confidence intervals for the MLE's of the Neibull parameters and the
unbiased estimates of the shape parameter. Therefore, further research is
needed in developing confidence intervals and the unbiasing factors for cen-
sored samples. The current additlon to SCAREdescribes how to detect outliers
and how to calculate Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit
test statistics and the 90-percent confidence bands about the Neibull
distribution.
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The fracture data of a material, especlally in the limited-strength range
used in laboratory tests, may fit manydistributions other than the Weibull dis-
tribution. However, prior experience wlth ceramics suggests that the Neibull
distribution is the best distribution to fit the failure data. Fractography is
essential for proper identification of flaw origins. Independent Weibull equa-
tions are used for volume- and surface-flaw-based reliability analyses. In
addition, the Neibull parameters are used to calculate the Batdorf flaw-density
constants for shear-insensitive cracks using closed-form solutions. These con-
stants are calculated for both volume- and surface-flaw-based reliability analy-
sis. For shear-sensitive cracks, however, numerical procedures are used in the
SCAREcode, just as in multidimensional stress states.
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TABLE I. - ENDURANCE TESTS OF DEEP-GROOVE

BALL BEARINGS

JAil estimates are biased estimates.]

Parameter
estimates

Liebleln and Zelen

(ref. 37)
Thoman et al.

(ref. 20)
SCARE

(refs. II and 12)

Maximum likelihood
estimates (MLE) of -

Weibull
modulus,

m

2.230

2.102

2.103

Characteristic

strength,

ae ,
Revolution x lO-6

80.00

81.99

81.88
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TABLEII. - EXTREMEFIBERFRACTURESTRESSESOFELECKTROSCHMELZNERKKEMPTEN(ESK)
HIPped SILICON CARBIDE (SIC) BARS

F]exure
bar

5
6
7
8
9

10
11
12
13
14
t5
16
17
18
19
20

Strength,
MPa

I 281.2
2 291.0
3 358.2

4 385.4
389.0
390.8
391.8
402.8
412.5
413.3
413.9
417.8
418.2
426.9
437.6
440.0
441.0
442.5
443.8
444.9

Flexure Strength, Flexure Strength,
bar MPa baF MPa

21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36
37
38
39
40

446.2 41
451.5 42
452.1 43
452.7 44
470.4 45
474.1 46
475.5 47
475.5 48
479.2 49
483.5 50
484.8 51
486.2 52
488.6 53
492.5 54
493.2 55
496.0 56
505.7 57
511.9 58
512.5 59
513.8 60

516.2
519.8
527.6
530.7
530.7
545.7
548.8
552.7
559.6
562.4
563.3
566.1
566.5
570.1
572.8
575.0
576. I
580.0
582.6
588.0

Flexure Strength,
bar MPa

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

588.6
591.0
591.0
593.3
598.7
599.6
610.0
612.7
619.9
619.9
622.2
622.3
640.5
649.0
657.2
660.0
664.3
673.5
673.9
725.3

TABLE 111. - WEIBULL PARAMETERS FOR FLEXURE

STRENGTH DATA SET OF ES< HIPped

SILICON CARBIDE BARS

[All estimates are biased estimates.]

Fracture data
set

GTE Laboratories
Sohio
Allison
NASA Lewls
Garrett

SCARE

Maximum likelihood
estimates (MLE) of -

Weibull
modulus,

m

7.16
6.82
4.91
6.59
6.60
6.49

Characteristic

strength,

oe ,
MPa

541.17
517.01
508.88
556.72
554.01
555.80

27



TABLE IV. - WEIBULL PARAMETERS FOR FLEXURE STRENGTH DATA SET

OF ASEA CERAMA HiPped SILICON NITRIDE BARS

[All estimates are biased estimates.]

Parameter Least squares Maximum likelihood
estimate analysis method method

Estimate
of

Weibull

modulus,
m

Estimate of
characteristic

strength,
oe,
MPa

MLE of
Weibull
modulus,

m

MLE of
characteristic

strength,

oe,
MPa

NASA Lewis 12.1 Not available 13.4 686.0
SCARE 11.74 690.5 13.38 686.2

I MAIN PROGRAM I

I INPUT FRACTURE STRENGTHS 1DEFINE FAILURE FLAW ORIGINS

CALL OUTLIE IIDENTIFY OUTLIERS

NFAILV > I |

CALL LEAST2

VOLUME-FLAW ANALYSIS

CALCULATE mV,OOV NO

I=

!  FAI V ICALL MAXL

VOLUME-FLAW ANALYSIS

CALCULATE mv,OOV NO

NFAILS I
CALL MAXL L-_

SURFACE-FLAw ANALYSIS_ I

CALCULATE mS'OOS H NO

CALCULATE

UNBIASED VALUES FOR mv,rnS

90% UPP. AND LOW. CONF.

BOUNDS FOR mV,OBv,ms,OBS

I NFAILS > ] I

CALL LEAST2 L

SURFACE-FLAW ANALYSIS_I

CALCULATLm S,OOS J]NO

NFAILV - NUMBER OF FAILED

SAMPLES BY VOLUME

FLAW

NFAILS - NUMBER OF FAILED

SAMPLES BY SURFACE

FLAW

MLORLE - CONTROL INDEX

FOR METHOD OF

SOLUTION

KOLMOGOROV-S_IIRNOV I

GOODNESS-OF-FIT TEST

CALCULATE D+,D-,D

ANDERSON-DARLING I
GOODNESS-OF-FIT TEST

CALCULATE A2

I CALCULATE

WEIBULL MEAN AND

STANDARD DEVIATION

I CALCULATE

KANOFSKY-SRINIVASAN

90% CONF. BAND VALUES

ABOUT THE WEIBULL LINE

CALL MAIIIAT I
CALCULATE

OBV,%S AND BATDORF CRACK-

DENSITY COEFFS. KBv,KBs

CALL PRINTP IPRINT OUT RESULTS

FIGURE I. - FLOWCHART FOR MATERIAL STATISTICAL STRENGTH PARAMETERS CALCULATIONS.
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